
ICPC Amritapuri Regionals 2025-26

1

B - Fair Removals

As part of the National Quantum Mission, researchers in Bengaluru are developing India’s first in-

digenous superconducting quantum processor. During the initialization phase, qubits are represented as

binary strings that must be purified to reach a ground state. The hardware allows for a specific deco-

herence operation where any three-qubit subsequence containing both ’0’ and ’1’ states can be collapsed

and removed from the chain. To achieve maximum quantum coherence, the researchers need to reduce

these strings to their shortest possible length. By calculating the minimum final length, you are helping

to optimize the error-correction protocols for the next generation of Indian supercomputers.

You are given a binary string s of length n.

In one operation, you can choose a subsequence† of s of length 3 such that it contains at least one

occurrence of both the characters 0 and 1, and delete it from the string. You cannot perform the

operation if the length of the string is smaller than 3. The remaining characters are concatenated

without changing their relative order.

Find the minimum possible final length of the string s after performing this operation any number of

times.
† A subsequence is a sequence that can be derived from the given sequence by deleting zero or more ele-

ments without changing the order of the remaining elements. For example, 100 and 11 are subsequences

of 1001, but 010 and 111 are not.

Input Format

• The first line of input will contain a single integer t, denoting the number of test cases.

• Each test case consists of two lines of input:

– The first line of each test case contains a single integer n — the length of the binary string.

– The second line contains the binary string s.

Output Format

• For each test case, output a single integer — the minimum possible final length of the string.

Constraints

• 1 ≤ t ≤ 105

• 1 ≤ n ≤ 2 · 105

• si ∈ {0, 1}

• The sum of n over all test cases won’t exceed 2 · 105.

Sample Input 1

4

2

01

3

010

2

3

000

6

001000

Sample Output 1

2

0

3

3

Explanation

• Test case 1: The string’s length is less than three, so no operation can be performed. The answer

is thus the length of the string, i.e. 2.

• Test case 2: We can choose the entire string in one operation, since it has length 3 and contains

both 0’s and 1’s. This deletes the entire string, so the answer is 0.

• Test case 3: All the characters of s are equal, so no operation can be performed.

3

C - Path Pair Maximization

As part of the Gati Shakti master plan, the Ministry of Railways is modernizing a regional cargo dis-

tribution network. The network is modeled as a tree with n logistics hubs, where each edge represents

an indigenous freight corridor. To enhance the monitoring of high-value ”Make in India” exports, the

government has decided to upgrade exactly two of these corridors with advanced IoT-enabled tracking

sensors. These two upgraded corridors will be designated as ”Black” routes, while the remaining cor-

ridors remain standard ”White” routes. A pair of hubs (u, v) is considered ”security-monitored” if the

unique freight path between them passes through at least one tracking-enabled Black corridor. To justify

the investment in this new technology, the planners want to strategically choose which two corridors to

upgrade so that the total number of security-monitored hub pairs is as high as possible. Your goal is to

find this maximum number of monitored pairs for a given network layout.

You are given a tree with n vertices numbered from 1 to n.

You must color exactly two edges of the tree black, and the rest of the edges will be colored white.

Find the maximum possible number of pairs of vertices (u, v) such that 1 ≤ u < v ≤ n and the shortest

path from u to v contains at least one black edge.

Input Format

• The first line of input will contain a single integer t, denoting the number of test cases.

• Each test case consists of multiple lines of input:

– The first line of each test case contains a single integer n — the number of vertices in the tree.

– The next n−1 lines describe the edges. The i-th of these n−1 lines contains two space-separated

integers ui and vi, denoting an edge between ui and vi in the tree.

Output Format

• For each test case, output a single integer — the maximum possible number of pairs of vertices (u, v)

such that 1 ≤ u < v ≤ n and the shortest path from u to v contains at least one black edge.

Constraints

• 1 ≤ t ≤ 104

• 3 ≤ n ≤ 2 · 105

• 1 ≤ ui, vi ≤ n

• The input edges describe a tree on the vertex set {1, 2, . . . , n}.

• The sum of n over all test cases won’t exceed 2 · 105.

Sample Input 1

2

3

1 2

2 3

4

4

1 2

2 3

2 4

Sample Output 1

3

5

Explanation

• Test case 1: There are only two edges, so we must color both black. Every pair of vertices will now

have a black edge on the path between them, so the answer is 3.

• Test case 2: One solution is to color the edges (1, 2) and (2, 4) black. Then, every path except the

one from 2 to 3 will have a black edge on it, making the answer 6− 1 = 5.

5

D - Point Mirror

Under the Make in India initiative, a team of engineers is calibrating an automated assembly line. The

system consists of n high-precision robotic grippers positioned along a linear track. Initially, each gripper

is located at a specific coordinate. To fine-tune the assembly process, the control software can execute

two types of maneuvers: it can swap the positions of any two grippers to reorganize the sequence, or

it can mirror one gripper across another to reach new calibration points. The engineering team has a

target configuration where each gripper has a designated final position. Your task is to determine if the

robotic system can reach this exact target state using any number of these two fundamental maneuvers.

There are n points on a number line. Initially, the i-th point is at coordinate ai.

You can perform the following operations any number of times, in any order:

• Operation 1: Choose two distinct points i, j and swap them.

• Operation 2: Choose two distinct points i, j and mirror point i across point j. Formally, set

ai := 2aj − ai

Is it possible to have the i-th point be at bi after all operations for all i (1 ≤ i ≤ n)?

Input Format

• The first line of input will contain a single integer t, denoting the number of test cases.

• Each test case consists of multiple lines of input:

– The first line of each test case contains a single integer n — the number of points.

– The next n lines describe the points. The i-th of these n lines contains two space-separated

integers ai and bi, denoting the initial coordinate and desired final coordinate of point i.

Output Format

• For each test case, output the answer — YES if it is possible to reach the desired final state after all

operations, and NO otherwise.

• You can output the answer in any case (upper or lower). For example, the strings Yes, yes, yEs,

and YES will all be recognized as valid responses for cases where reaching the final configuration is

possible.

Constraints

• 1 ≤ t ≤ 104

• 1 ≤ n ≤ 2 · 105

• −109 ≤ ai, bi ≤ 109

• The sum of n over all test cases won’t exceed 2 · 105.

6

Sample Input 1

6

1

1 1

1

0 2

2

0 3

1 2

2

1 5

2 7

3

-3 5

9 13

7 5

3

-3 11

9 25

7 9

Sample Output 1

YES

NO

YES

NO

NO

YES

Explanation

• Test case 1: The only point is already at the desired coordinate.

• Test case 3: The following sequence of operations achieves the desired coordinates.

– The initial coordinates are [0, 1].

– Mirror point 1 across point 2. The coordinates are now [2, 1].

– Swap point 1 with point 2. The coordinates are now [1, 2].

– Mirror point 1 across point 2. The coordinates are now [3, 2]. These are the desired coordinates.

• Test case 6: The following sequence of operations achieves the desired coordinates.

– The initial coordinates are [−3, 9, 7].

– Swap point 2 with point 3. The coordinates are now [−3, 7, 9].

– Mirror point 2 across point 3. The coordinates are now [−3, 11, 9].

– Mirror point 1 across point 2. The coordinates are now [25, 11, 9].

– Swap point 1 with point 2. The coordinates are now [11, 25, 9]. These are the desired coordi-

nates.

7

• For test cases 2, 4, 5 it can be proven that it is impossible to have the points at the desired coordinates.

8

E - Preventative Measures

As part of the Smart Cities Mission, engineers are designing a highly efficient municipal utility grid.

The network is currently structured as a tree with 2n connection hubs. To maintain load balance, a

specialist named Bob is tasked with pairing these hubs into n distinct links such that the total length

of all connections equals exactly k kilometers. However, to ensure the grid is resilient against specific

synchronization failures, a lead architect named Alice must modify the network layout. She is authorized

to decommission one existing transmission line and replace it with a new one, ensuring the network

remains a single connected tree. Her objective is to reconfigure the grid so that it becomes mathematically

impossible for Bob to achieve a total connection length of exactly k, thereby forcing a more robust

distribution of the network load.

Alice and Bob have a tree T consisting of 2n nodes numbered from 1 to 2n.

Bob has an integer k, and wants to find n pairs (x1, y1), (x2, y2), . . . , (xn, yn) such that each integer from

1 to 2n appears in exactly one pair and the sum of distances
∑n

i=1 dist(xi, yi) = k, where dist(xi, yi)

denotes the distance between nodes xi and yi in the tree, i.e. the number of edges on the (unique) path

between xi and yi.

Alice doesn’t want Bob to succeed. She can perform the following operation:

• Remove an edge (u, v) from T .

• Add a new edge (a, b) such that T remains a tree.

Note that it is allowed to choose the same edge to both delete and insert, which will just result in the

original tree.

Help Alice find an edge (u, v) that should be deleted and an edge (a, b) that should be added. If there

are multiple solutions, you may find any of them.

It can be proven that under the constraints of this problem, it is always possible to delete an edge and

add an edge such that there do not exist n pairs (x1, y1), (x2, y2), . . . , (xn, yn) where each integer from 1

to 2n appears in exactly one pair and the sum of distances equals k.

Input Format

• The first line of input will contain a single integer t, denoting the number of test cases.

• Each test case consists of multiple lines of input:

– The first line of each test case contains two space-separated integers n and k.

– The next 2n − 1 lines describe the edges. The i-th of these 2n − 1 lines contains two space-

separated integers ui and vi, denoting an edge between ui and vi in the tree.

Output Format

• For each test case, output two lines:

– The first line should contain two integers u and v — meaning that edge (u, v) is to be deleted.

– The second line should contain two integers a and b — meaning that edge (a, b) is to be added.

• If there are multiple solutions, print any of them.

9

Constraints

• 1 ≤ t ≤ 104

• 2 ≤ n ≤ 2 · 105

• 1 ≤ k ≤ 1012

• The input edges describe a tree on the vertex set {1, 2, . . . , 2n}.

• The sum of n over all test cases won’t exceed 2 · 105.

Sample Input 1

2

2 20

1 2

2 3

3 4

2 4

1 2

2 3

3 4

Sample Output 1

1 2

1 2

1 2

1 3

Explanation

• Test case 1: The initial tree already has no way for Bob to obtain a score of k = 20, so Alice can

simply remove and insert any existing edge.

• Test case 2: The initial tree has a way for Bob to obtain a score of k = 4, for example by choosing

pairs (1, 4) and (2, 3). Alice deletes edge (1, 2) and inserts (1, 3). In this new tree, Bob cannot obtain

a score of 4.

10

F - Red Green Game

As India establishes its first major semiconductor fabrication plant, engineers are fine-tuning the au-

tomated logic gates used in 28nm chip production. Two control algorithms, Alice and Bob, take turns

processing a stream of logic signals represented by Red (Low-energy) and Green (High-energy) pulses.

Both algorithms begin with an internal state of ”Low” (Red). Processing a Green pulse flips the algo-

rithm’s state between Low and High, while a Red pulse keeps the current state locked. The efficiency

of the final circuit depends on how many algorithms end in the ”High” state. Alice’s logic is designed

to maximize this high-energy output, while Bob’s error-correction logic seeks to minimize it to prevent

overheating.

Alice and Bob play a game. They initially have x red balls and y green balls.

Alice and Bob each have a color that is initially red. They take turns alternately, with Alice going first.

On each turn, a player does the following:

• Pick a ball and remove it.

• If the picked ball is red, the player’s color remains unchanged.

• If the picked ball is green, the player’s color flips: if it was red, it becomes green, and if it was green,

it becomes red.

The game ends when there are no balls left.

The score of the game is the total number of green colors at the end (i.e., count how many players have

green at the end). Alice wants to maximize the score, while Bob wants to minimize it.

Determine the score if both players play optimally.

Input Format

• The first line of input will contain a single integer t, denoting the number of test cases.

• Each test case consists of a single line of input, containing two space-separated integers x and y —

the number of red and green balls, respectively.

Output Format

• For each test case, output a single integer — the score of the game if both players play optimally.

Constraints

• 1 ≤ t ≤ 105

• 0 ≤ x, y ≤ 109

• x+ y ≥ 1

Sample Input 1

4

1 0

0 1

2 1

0 2

11

Sample Output 1

0

1

1

2

Explanation

• Test case 1: Alice’s only move is to choose a red ball, which doesn’t change her color. The game

then ends with both players having red. The answer is 0.

• Test case 2: Alice’s only move is to choose a green ball, which changes her color from red to green.

The game then ends with Alice having green and Bob having red. The answer is 1, since one player

has green.

12

G - Score Queries

As part of the National Green Hydrogen Mission, a distribution hub manages n hydrogen storage tanks,

where ai represents the current pressure level of the i-th tank. To safely transport the hydrogen to

industrial units, engineers use specialized extraction valves. In a single extraction cycle, a technician

can select a group of tanks to depressurize by 1 unit each, provided that every selected tank currently has

a distinct pressure level to prevent resonance in the manifold system. The efficiency of a configuration is

measured by its score: the minimum number of extraction cycles required to completely empty all tanks.

As the hub receives real-time supply updates, the pressure in tank p is frequently adjusted to a new value

x. Your task is to calculate the efficiency score of the entire array after each update to ensure the facility

maintains optimal throughput for India’s burgeoning green energy grid.

Suppose you are given an array b consisting of m positive integers.

You can modify b by performing the following operation:

• Select a subsequence s of indices from {1, 2, . . . ,m} such that bi ̸= bj for all pairs (i, j) where i < j

and both i and j are in s (i.e., all selected indices must have distinct values in b).

• Subtract 1 from bi for all i in s.

Define score(b) to be the minimum number of operations needed to make all m elements of b equal to 0.

You are given an array a consisting of n positive integers.

There will be q updates. In each update, you will be given two integers p and x, and you need to update

ap := x. After each update, print score(a).

Updates to the array are permanent.

Input Format

• The first line of input will contain a single integer t, denoting the number of test cases.

• Each test case consists of multiple lines of input:

– The first line of each test case contains two space-separated integers n and q — the length of

the array and the number of updates to it.

– The second line contains n space-separated integers a1, . . . , an

– The next q lines describe the updates. The i-th of these q lines contains two space-separated

integers pi and xi, denoting a point update of the form api := xi.

Output Format

• For each test case, output q lines. The i-th line should contain a single integer — the score of the

array a after the i-th update.

Constraints

• 1 ≤ t ≤ 104

• 1 ≤ n, q ≤ 2 · 105

• 1 ≤ ai ≤ n

13

• 1 ≤ pi ≤ n

• 1 ≤ xi ≤ 109

• The sum of n and the sum of q over all test cases each won’t exceed 2 · 105.

Sample Input 1

1

3 3

1 1 1

3 1

2 2

1 343

Sample Output 1

3

3

343

Explanation

• Test case 1: The array is initially [1, 1, 1].

– The first update functionally doesn’t change the array, so it remains [1, 1, 1]. We can’t pick

duplicate elements, so we’re forced to perform one operation on each index. The score of the

array is 3.

– The second update sets a2 = 2, so now the array is [1, 2, 1]. The score of the array remains 3,

since we can do the following:

∗ Move 1: pick the subsequence [2, 1] and subtract 1 from each element. Now, a = [1, 1, 0].

∗ Moves 2 and 3: pick [1].

– The third update sets a1 = 343, so that the array is now [343, 2, 1]. It can be shown that the

score of this array is 343.

14

H - Segment Elimination

As part of the Drone Shakti initiative, the Directorate General of Civil Aviation (DGCA) is managing a

high-density ”Green Zone” for autonomous delivery drones. On a specific aerial corridor, n drones are

scheduled to pass through, each occupying a specific time segment [li, ri]. To prevent mid-air collisions,

two drones are considered to be in conflict if their time segments intersect. To streamline the traffic, a

controller must clear the corridor by canceling at least n−2 drone flights. According to the safety protocol,

she can clear a set of drones in a single operation only if no two drones in that set have intersecting time

segments. Alisa needs to find the minimum number of operations, m, required to remove the necessary

flights; as well as the number of subsets of at least n− 2 drone flights that can be cleared in m moves.

There are n segments on a number axis. The i-th segment is [li, ri]. Two segments are considered

intersecting if there exists a point that is inside both segments (i.e. their intersection is non-empty).

Now, Alisa wants to remove at least n− 2 segments by doing the following operation multiple times:

• Select a non-empty set of segments S such that for any two different segments in S they do not

intersect, then remove all segments in the set from the number axis.

Please help Alisa find out the minimum number of operations needed to remove at least n− 2 segments

from the number axis. Let m denote this minimum number of operations. You also need to find the

number of subsets s (0 ≤ |s| ≤ 2) of intervals so that excluding s, all the remaining intervals can be

removed in m operations.

Input Format

• The first line of input will contain a single integer t, denoting the number of test cases.

• Each test case consists of multiple lines of input:

– The first line of each test case contains a single integer n — the number of segments.

– The next n lines describe the segments. The i-th of these n lines contains two space-separated

integers li and ri, denoting the segment [li, ri].

Output Format

• For each test case, output two space-separated integers: the minimum number of operations needed

and the number of subsets s (0 ≤ |s| ≤ 2) of intervals such that excluding s, all the remaining

intervals can be removed in m operations.

Constraints

• 1 ≤ t ≤ 105

• 2 ≤ n ≤ 2 · 105

• 1 ≤ li ≤ ri ≤ 2 · n

• The sum of n over all test cases won’t exceed 2 · 105.

15

Sample Input 1

6

4

1 6

1 2

6 8

2 2

2

1 2

3 4

5

2 6

5 9

2 7

6 9

8 9

2

1 2

2 4

3

3 4

3 4

3 4

4

1 2

3 4

5 6

7 8

Sample Output 1

1 2

0 1

2 5

0 1

1 3

1 11

Explanation

• Test case 1: The minimum number of operations is 1, because we can for example remove [1, 2]

and [6, 8] with one move, thus leaving two segments. There are also two possible subsets of intervals

of size ≤ 2 that can remain after a single move:

– {[1, 6], [2, 2]}, which will remain after using the aforementioned removal of [1, 2] and [6, 8].

– {[1, 6], [1, 2]}, which will remain after removing [2, 2] and [6, 8].

16

I - Sequence Domination

As part of the National Smart Grid Mission, engineers at the Power Grid Corporation of India are

designing an automated load-shedding protocol for n high-capacity industrial zones. Each zone i is

assigned two priority coefficients, ai and bi, ranging from 1 to m. These coefficients represent the

indigenous ”Efficiency Ratings” of different equipment manufacturers. The power demand in the grid is

modeled by a super decreasing sequence v, where each zone’s load is so significant that it outweighs the

combined demand of all subsequent zones in the hierarchy. To ensure that the ”Type-A” manufacturing

sector always contributes more to the national grid stability than ”Type-B,” the ratings must be chosen

such that the weighted contribution of a is greater than or equal to b for every possible super decreasing

load profile. Your task is to calculate the total number of valid pairs of rating sequences (a, b) that satisfy

this strategic requirement, helping the mission control ensure a stable and prioritized energy distribution

across the country.

A sequence v1, v2, . . . vn is called super decreasing if vn ≥ 0, and vi ≥ vi+1 + vi+2 + . . . + vn for all

1 ≤ i < n.

Given positive integers n and m, find the number of pairs of integer sequences a and b of length n, such

that:

• 1 ≤ ai, bi ≤ m for all 1 ≤ i ≤ n.

• For all super decreasing sequences v of length n,
n∑

i=1

aivi ≥
n∑

i=1

bivi.

Since the number of pairs of such sequences can be very large, print the number modulo 998 244 353.

Input Format

• The first line of input will contain a single integer t, denoting the number of test cases.

• Each test case consists a single line of input, containing two space-separated integers n and m.

Output Format

• For each test case, print the number of pairs of integer sequences of length n that satisfy the required

conditions, modulo 998 244 353.

Constraints

• 1 ≤ t ≤ 100

• 1 ≤ n,m ≤ 100

• The sum of n over all test cases won’t exceed 100.

Sample Input 1

4

1 1

2 2

2 1

34 43

17

Sample Output 1

1

10

1

39531442

Explanation

• Test case 1: The only possible pair of sequences is ([1], [1]), and it is valid.

• Test case 2: The following are valid pairs of sequences:

– For b = [1, 1], any choice of a is valid. There are four possible choices.

– For b = [1, 2], valid choices of a are [1, 2], [2, 1], [2, 2].

– For b = [2, 1], valid choices of a are [2, 1], [2, 2].

– For b = [2, 2], the only valid choice of a is [2, 2].

So, the number of valid pairs of sequences equals 4 + 3 + 2 + 1 = 10.

18

J - Varied Subsequences

With the success of the NavIC navigation system, ISRO is working on a new constellation of small

satellites launched via the SSLV (Small Satellite Launch Vehicle). To prevent signal collisions, each

satellite in a cluster must operate at a distinct relative power level compared to a central ground station

frequency x. If the absolute power offsets are not unique, the signals will suffer from destructive interfer-

ence. During a telemetry scan, the ground station receives an array of power levels. You are tasked with

identifying a subsequence of these levels that cannot be made distinct through any reference frequency x,

signaling a potential communication bottleneck in the satellite network.

An array b of length m is said to be varied if there exists an integer x satisfying the following:

• Let c be an array of length m such that ci = |bi − x|.

• Then, it must hold that ci ̸= cj for 1 ≤ i < j ≤ m, i.e. all the elements of c are distinct.

In particular, an array of length 1 is always varied.

Here, |y| denotes the absolute value of y. For example, |1| = 1, | − 2| = 2, |0| = 0.

You’re given an array a of length n. Your task is to find any non-empty subsequence† of a that’s not

varied.

If multiple such subsequences exist, you may find any of them. If no such subsequence exists, print −1.
† A subsequence is a sequence that can be derived from the given sequence by deleting zero or more

elements without changing the order of the remaining elements. For example, [1, 2, 2] and [3, 2] are

subsequences of [1, 2, 3, 2], but [3, 1] and [1, 1, 2] are not.

Input Format

• The first line of input will contain a single integer t, denoting the number of test cases.

• Each test case consists of two lines of input:

– The first line of each test case contains a single integer n — the length of the array.

– The second line contains n space-separated integers a1, . . . , an

Output Format

• For each test case,

– If there does not exist a subsequence of the given that’s not varied, print one line containing

the integer −1.

– Otherwise, print two lines.

∗ The first line should contain an integer k (1 ≤ k ≤ n), denoting the size of the subsequence

you found.

∗ The second line should contain k space-separated integers denoting the elements of the

subsequence, in order from left to right.

• If there are multiple possible subsequences that are not varied, you may print any of them.

19

Constraints

• 1 ≤ t ≤ 1000

• 1 ≤ n ≤ 2000

• 1 ≤ ai ≤ 109

• The sum of n over all test cases won’t exceed 2000.

Sample Input 1

2

4

8 9 5 8

2

10 20

Sample Output 1

3

8 9 8

-1

Explanation

• Test case 1: [8, 9, 8] is a subsequence of a = [8, 9, 5, 8], and it can be proved that it is not varied.

• Test case 2: The three subsequences of the array are [10], [20], [10, 20]. It can be proved that they’re

all varied, so no solution exists.

20

K - XOR Product MST

Under the BharatNet initiative, the Department of Telecommunications is deploying an indigenous fiber-

optic backbone to bridge the digital divide in rural India. In a newly integrated district, n villages,

indexed from 1 to n, are slated for high-speed connectivity. To optimize the deployment of underground

cables, engineers have developed a specialized cost model for linking any two villages. The expenditure

for laying a connection between village x and village y is determined by the product of their indices

and a ”signal-interference coefficient”, which is calculated as the bitwise XOR-sum of all village indices

in the range from x to y. To ensure every village is connected to the national grid while keeping the

total infrastructure budget as low as possible, the project planners must determine the total weight of

the Minimum Spanning Tree for this network. This calculation is essential for delivering e-governance,

digital healthcare, and education to the furthest corners of the country.

You are given an integer n.

Consider a graph G consisting of n nodes numbered 1, 2, 3, . . . , n.

For any two nodes x and y where 1 ≤ x < y ≤ n, there is an undirected edge between them with weight

x · y · (x⊕ (x+ 1)⊕ · · · ⊕ (y − 1)⊕ y)

where ⊕ denotes the bitwise XOR operation.

Find the sum of the weights of the minimum spanning tree of G.

Since this value might be large, you only need to find it modulo 998 244 353.

Input Format

• The first line of input will contain a single integer t, denoting the number of test cases.

• Each test case consists of a single line of input, containing one integer n.

Output Format

• For each test case, output a single integer — the sum of the weights of the minimum spanning tree

of G, modulo 998 244 353.

Constraints

• 1 ≤ t ≤ 105

• 1 ≤ n ≤ 106

• There is no constraint on the sum of n across all tests.

Sample Input 1

4

1

2

3

34343

21

Sample Output 1

0

6

6

181162958

Explanation

• Test case 1: There’s a single vertex, the MST has weight 0.

• Test case 2: There’s a single edge with weight 1 · 2 · (1 ⊕ 2) = 2 · 3 = 6, and the MST consists of

this edge.

• Test case 3: There are three edges:

– (1, 2) with weight 6

– (1, 3) with weight 1 · 3 · (1⊕ 2⊕ 3) = 3 · 0 = 0

– (2, 3) with weight 2 · 3 · (2⊕ 3) = 6 · 1 = 6.

The MST is obtained by taking the edge (1, 3) along with any one of the other edges, for a cost of

0 + 6 = 6.

22

L - X To Y

As part of the National Supercomputing Mission, researchers are testing a high-precision arithmetic unit

for an indigenous supercomputer. This unit operates on an extremely large bit-width of 10100 bits to

handle complex scientific simulations. To verify the efficiency of the data bus, engineers must transform

an initial bit-string x into a target configuration y using the processor’s two core hardware instructions:

an incremental step (adding 1) and a global bit-shuffle (reordering the bit-stream). Because these oper-

ations consume clock cycles, the goal is to determine the most efficient path between these two massive

numerical states to optimize the supercomputer’s throughput.

You are given two integers x and y, in a 10100 bits system. For example, x = 5 is represented as

00 . . . 00︸ ︷︷ ︸
(10100−3) zeros

101.

In each turn, you can perform one of the following two operations on x:

• Add 1 to x. If x overflows, it becomes 0.

• Reshuffle the bits of x. That is, rearrange the bits of x in any order you want. For example, if x has

binary representation 00 . . . 00︸ ︷︷ ︸
(10100−3) zeros

101, you can rearrange it to 00 . . . 00︸ ︷︷ ︸
(10100−3) zeros

110 or 1 00 . . . 00︸ ︷︷ ︸
(10100−2) zeros

1,

etc.

Find the minimum number of turns needed to make x equal to y.

Input Format

• The first line of input will contain a single integer t, denoting the number of test cases.

• Each test case consists of a single line of input, containing two space-separated integers x and y.

Output Format

• For each test case, output a single integer — the minimum number of turns needed to change x to

y.

Constraints

• 1 ≤ t ≤ 105

• 1 ≤ x, y ≤ 1018

Sample Input 1

4

1 2

3 1

3 4

7 7

Sample Output 1

1

2

1

0

23

Explanation

• Test case 1: A single addition is enough to turn x = 1 into y = 2.

• Test case 2: An optimal solution: Add 1 to x (now 4), then shuffle bits to get 00 . . . 00001 = y.

The answer is 2. It can be shown that one move is not enough.

• Test case 4: x is already equal to y.

24

